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Introducing a particular parameter in the equations of motion for the magnetization in an anisotropic ferro-
magnet with a magnetic field, the Lax equations for Darboux matrices are generated recursively, the Jost
solutions are satisfied the corresponding Lax equations, and the nonlinear dynamics of the magnetization are
investigated. The results show that the solitary waves depend essentially on two velocities which describe a
spin configuration deviating from a homogeneous magnetization. The center of inhomogeneity moves with a
constant velocity, while the shape of solitary waves also changes with another velocity. The depths and widths
of surface of solitary waves vary periodically with time, meanwhile its shapes are not symmetrical with respect
to the center. Thez component of the total magnetic moment and the total magnetic moment are not constants.
The asymptotic behavior of multisoliton solutions is also analyzed.@S1063-651X~96!12710-0#

PACS number~s!: 05.30.2d, 05.90.1m, 75.50.Gg

I. INTRODUCTION

The study of ferromagnets is of considerable intrinsic in-
terest, especially from the points of view of both soliton
theory and condensed matter physics@1–6#. In particular, its
continuum limit is governed by the Landau-Lifschitz equa-
tion, and it displays fascinating geometrical aspects: isotro-
pic @7–10# and pure anisotropic@11–13# systems are geo-
metrically equivalent, and gauge equivalent to a nonlinear
Schrödinger equation. These, as well as the biaxial aniso-
tropic @14–19# systems, are completely integrable. On the
experimental side, a ferromagnet with an easy plane in a
symmetry-breaking external transverse field has received
continuing interest, though the most theoretical treatments
have been based on the approximate mapping@20# to a sine-
Gordon equation.

By separating variables in the moving coordinates, Tjio
and Wright@21# and Quispel and Capel@22# separately ob-
tained the Landau-Lifschitz equation for an isotropic ferro-
magnet and a ferromagnet with an easy axis. In terms of an
inverse scattering transformation, Takhtajan@23# outlined
very briefly the main steps of the solution of equation of
motion. Fogedby@24# gave the detains of the procedure men-
tioned. Unfortunately, some essential steps in his arguments,
such as the estimation of the value of Jost solutions, can
hardly be accepted with satisfaction. Pu, Zhou, and Li@25#

reported exclusively the multisoliton solutions of the
Landau-Lifshitz equation. However, the Landau-Lifschitz
equation for a ferromagnet with an easy plane was previ-
ously unsolved@2#. It is impossible to find the general sta-
tionary solution, as mentioned by Tjio and Wright@21#.

Reducing the equation of motion to a sine-Gordon equa-
tion for a ferromagnet with an easy plane, Mikeska@26# ob-
tained a solution. However, there exist some questions about
this approach. First, this reduction has not been rigorously
established except forT→0. Then, it is apart from the quan-
tum effects@2#, which are particularly crucial for CsNiF3
with S51. Third, it is inadequate@27#, as shown by the
neutron scattering experiments in CsNiF3. Finally, when an
external field tends to zero, this solution becomes a traveling
wave which does not obviously relate to nonlinearity of spin
interactions. Long and Bishop@28# proposed another solu-
tion. However, when an anisotropic approach vanished this
solution does not tend to the well-known solution of an iso-
tropic ferromagnet. Using the variation method, Nakumura
and Sasada@11# obtained a solution. If this solution is di-
rectly substituted into the equation of motion, it does not
satisfy this equation. Reducing the equation of motion to an
appropriate form, Kosevich Ivanov, and Kovalev@29# found
a solution. But it could not be considered as an approximate
solution of equation for a ferromagnet with an easy plane,
since it does not satisfy this equation even in the approxima-
tion of first order anisotropy.

Borisov @30# and Sklyanin@31# have formulated sepa-
rately an inverse scattering problem in its classical form, i.e.,
in terms of equations of the Marchenko type for a complete
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anisotropic ferromagnet. By means of an inverse scattering
transformation, Mikhailov@32# and Rodin@16# were able to
reduce the problem to Riemann boundary value problem on a
torus. However, these results are expressed by the elliptic
function, they are more complicated, and they are difficult to
transform to those of ferromagnet with an easy plane. Even
though soliton solutions were found, they are difficult to
transform to those of a ferromagnet with an easy plane, as
mentioned by Faddeev and Takhtajan@3#. Derivating the
Marchenko equation by an inverse scattering transformation,
Borovik and co-workers@33,34# could not find even the
single soliton solution in a uniaxial anisotropic ferromagnet.
Using the Hirota method, Bogdan and Kovalev@35# at-
tempted to construct exact multisoliton solutions in an aniso-
tropic ferromagnet. However, they could not prove a series
of nontrivial identities for the parameters of the solution.
When an easy plane anisotropy is weak, explicit expressions
cannot be obtained. Taking into account only the first order
approximation, Ivanov, Kosevich, and Babich@36# obtained
a useful result.

There exist some difficulties in the study of the nonlinear
dynamics of the magnetization in an anisotropic ferromag-
net. Its equation of motion, differing from those of an isotro-
pic ferromagnet, could not be solved by the method of sepa-
rating variables in moving coordinates@21,22#. Then this
equation could not be solved by an inverse scattering trans-
formation; in addition to complexity due to the Riemann
surface, there is the double-valued function of the standard
spectral parameter, and the reflection coefficient at the edges
of cuts in the complex plane could not be neglected even in
the case of nonreflection. Therefore, an exact treatment of
the nonlinear dynamics of the magnetization in an aniso-
tropic ferromagnet has never been done to our knowledge.

It is the purpose of this paper to investigate exactly the
nonlinear dynamics of the magnetization in an anisotropic
ferromagnet with a magnetic field. This paper is organized as
follows: in Sec. II introducing a particular parameter, the Lax
equations for Darboux matrices are generated recursively.
Section III shows that Jost solutions satisfy the correspond-
ing Lax equations. The exact soliton solutions are obtained,
and it is shown that thez component of the total magnetic
moment and the total magnetic momentum are not constants.
In Sec. IV the asymptotic behavior of multisoliton solutions
is also analyzed. Section V contains conclusions. This ap-
proach is a good method of studying of the nonlinear dynam-
ics of the magnetization, in the case of a ferromagnet with
anisotropy in the presence of an external magnetic field.

II. EQUATIONS OF MOTION

In the macroscopic theory of ferromagnetism, the mag-
netic state of a crystal is described by the magnetization vec-
tor M5(Mx ,My ,Mz), while the dynamics and kinetics of a
ferromagnet are determined by variations of its magnetiza-
tion. As a function of space coordinates and time, the mag-
netization of a ferromagnetM (x,t) is a solution of the
Landau-Lifschitz equation

]M

]t
5
2mB

\
M3

dE

dM
, ~1!

wheremB is the Bohr magneton. Equation~1! has an integral
of motion ,M2.[M0

25const. In the ground state, the
quantityM0 coincides with a so-called spontaneous magne-
tizationM05(2mBS/a

3), whereS is the atomic spin anda is
the interatomic spacing.

In general, the magnetic energyE of a biaxial anisotropic
ferromagnet, including an exchange energyEex, a magnetic
anisotropic energyEan, and a Zeeman energyEZ , can be
written as

E5Eex1Ean1EZ
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2d3x2mBE M•Bd3x. ~2!

If Ean50, a crystal is called an isotropic ferromagnet. In the
limit bx50, a biaxial anisotropic ferromagnet changes into
an uniaxial anisotropic ferromagnet: whenbz.0, an anisot-
ropy is of an easy-axis type, and whenbz,0 it is of an
easy-plane type.

If measuring the space coordinatex and time coordinate
t in units of l 05(J/bz)

1/2 andv05(2mBbzM0 /\), then ac-
cording to Eqs.~1! and ~2!, we can obtain the following
equation of motion:

] tM5M3@]xxM1JM1mBB#, ~3!

where the matrixJ5diag (Jx ,Jy ,Jz) is related to the aniso-
tropic constants. In particular, we may choose
J5diag(0,z,r21z), wherez5ubxubz(bx,0). In the case of
a uniaxial anisotropic ferromagnet,J5diag(0,0,r2). In gen-
eral, the third term on the right-hand side of Eq.~3! describe
various perturbations such as an external field in this paper.
When an external field is longitudinal,B5(0,0,Bz), this term
can be removed by the gauge transformation, so that the
system becomes integrable. However, if an external field is
transverse, e.g.,B5(Bx,0,0), this term is not removable by
the gauge transformation, and none of the spin components
remain conserved quantities. Consequently, the combined
Galilean plus gauge invariance of the equation is broken, and
no Lax pairs seem to exist; this system is generally thought
to be nonintegrable. Only in the absence of either an aniso-
tropic interaction or an external field does this system be-
come integrable. When the oscillations of the magnetization
vectorM are localized near an easy planeyz, Eq. (3) has
transformed a sine-Gordon equation in the limit
Jx,,Jy,Jz . Similarly, this equation also changes a non-
linear Schro¨dinger equation in the limitJx'Jy,,Jz , when
the oscillations of the vectorM are localized in the vicinity
of the vacuum stateM (x,t)5(0,0,M0).

Equation~3! may be represented as a compatibility con-
dition ] tL2]xA1@L,A#50 of two equations for 232 ma-
tricesC(x,t;m,l):

]xC~x,t;m,l!5L~m,l!C~x,t;m,l!,

] tC~x,t;m,l!5A~m,l!C~x,t;m,l!, ~4!

while
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L~m,l!52 im~Mxsx1Mysy!2 ilMzsz ,

A~m,l!52 im~My]xMz2Mz]xMy!sx2 im~Mz]xMx

2Mx]xMz!sy2 il~Mx]xMy2My]xMx!sz

1 i2ml~Mxsx1Mysy!1 i2m2Mzsz , ~5!

wheresa(a5x,y,z) are the Pauli matrices.
Since the parametersl andm in Eq. ~5! satisfy the rela-

tion l25m224h2, whereh25r21mBB. If one of them is
taken to be an independent parameter, then the other is a
double-valued function of the first, and it is then necessary to
introduce a Riemann surface. In order to avoid the complex-
ity brought about by a Riemann surface, we will introduce a
particular parameterj,

l5j2h2j21, m5j1h2j21, ~6!

wherej56h correspond to zerol and tom562h. In the
complexm plane, these two points are the edges of cuts. This
indicates that the edges of cuts must make a contribution
even in the case of nonreflection when we use an inverse
scattering transformation. The corresponding Lax equations
are written as

]xC~j!5L~j!C~j!,

~7!

] tC~j!5A~j!C~j!.

There are two different types of the physical boundary
conditions for Eq.~3!. The boundary condition of the first
type, corresponding to breatherlike solutions usually called
magnetic solitons, is chosen as

M→M05~0,0,M0! at x→6`. ~8!

The corresponding Jost solution of Eq.~7! may be chosen as

C0~j!5 1
2 $I2 i ~sx1sy1sz!%expH 2 i ~j2h2j21!

3M0Fx22
~j21h2!2

j~j22h2!
t GszJ . ~9!

One of the most powerful methods for constructing exact
solutions of nonlinear integrable equations is the Darboux
transformation method@37–42#. Using Darboux matrices
Dn(j), we can define the Jost solutionCn(j) of Eq. ~7!,

Cn~j!5Dn~j!Cn21~j!, ~10!

wheren51,2,3, . . . ,Dn(j) has two polesjn and2 j̄n . Sub-
stituting Eq.~10! into Eq. ~7! with a suitable subscript, the
Lax equations forDn(j) can be written as

]xDn~j!5Ln~j!Dn~j!2Dn~j!Ln21~j!,

~11!

] tDn~j!5An~j!Dn~j!2Dn~j!An21~j!.

In Appendix A, we will obtain some relations for the Lax
pairsL andA, the Jost solutionsC0(j) andCn(j), and the
Darboux matricesDn(j). They are useful for further calcu-
lations in the rest of this paper.

III. SOLITONS

WhenDn(j) has only two simple polesjn and2 j̄n , we
can define

Dn~j!5CnBn~j!, ~12!

whereCn is a 232 matrix independent ofj, and

Bn~j!5I2
jn2 j̄n
jn2j

Fn2
j̄n2jn

j̄n1j
F̃n , ~13!

while

~jn2 j̄n!CnFn , ~jn2 j̄n!CnF̃n ~14!

are residues at polesjn and2 j̄n , whereFn andF̃n are also
232 matrices independent ofj, respectively.

The following are relations for Darboux matricesDn(j):

Dn
†~ j̄ !5Bn

†~ j̄ !Cn
† , ~15!

Dn
21~j!5Bn

21~j!Cn
21 , ~16!

and

Dn~j!Dn
21~j!5Dn

21~j!Dn~j!5I . ~17!

In the rest of this section, we will determineBn(j) and
Cn separately. First, according to Appendix A and Eq.~15!,
one can obtain the following relations forBn(j):

Bn
†~ j̄ !5I2

j̄n2jn

j̄n2j
Fn
†2

jn2 j̄n
jn1j

sxFn
Tsx ~18!

and

Bn
21~j!5Bn

†~ j̄ !, ~19!

where the superscriptT means transpose, while

F̃n5sxF̄nsx . ~20!

Since Dn(j)Dn
21(j)5Dn

21(j)Dn(j)5I in Eq. ~17!, it
has not poles, i.e.,FnBn

†( j̄n)50, i.e.,

FnS I2Fn
†2

jn2 j̄n
2jn

sxFn
TsxD 50; ~21!

this result shows thatFn is degenerated.
In Appendix B, we will obtainFn and F̃n separately. In

terms of Eq.~13! and Appendix B,Bn(j) can be expressed
by
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Bn~j!5@~j2jn!~j1j̄n!~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!#21S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D

3F j2S j̄nudnu21jnugnu2 0

0 j̄nugnu21jnudnu2
D 1j~jn

22 j̄n
2!S 0 ḡndn

d̄ngn 0 D
2ujnu2S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D G . ~22!

Second, by means of Appendix A and Eq.~12!, there are the
following relations forCn:

Cn5sxC̄nsx , ~23!

Cn
†5Cn

21 , ~24!

and

CnCn
†5I ; ~25!

this result shows thatCn is a diagonal, i.e.,

~Cn!125~Cn!2150, ~26!

~Cn!115~Cn!22, ~27!

and

u~Cn!11u51. ~28!

Since only the module of (Cn)11 is equal to 1, one can
write

Cn5expS i2 unszD , ~29!

whereun is real and characteristic of the rotation angle of
spin in thexy plane; it may be dependent onx and t.

In order to determineCn , substituting Eq.~14! into Eq.
~11!, then taking the limitj→` and 0, we can obtain

]x~Cn!52 i2h~Mn!zsz~Cn!1~Cn!i2h~Mn!zsz ,
~30!

]x„CnBn~0!…5 i2h~Mn!zsz„CnBn~0!…

2@CnBn~0!# i2h~Mn!zsz .

Comparing these two equations, one can find

Cn
225Bn~0!. ~31!

Using Eqs.~22! and ~31!, Cn can be determined by

Cn5@~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!#21/2

3S j̄nudnu21jnugnu2 0

0 j̄nugnu21jnudnu2
D , ~32!

while un in Eq. ~29! can be written as

un52tan21F jn9~ ugnu22udnu2!
jn8~ ugnu21udnu2!

G , ~33!

wherejn8 and jn9 denote the real and imaginary part ofjn ,
respectively.

Up to now, we have obtainedCn and Bn(j), i.e., the
Darboux matricesDn(j) have been recursively determined.
Substituting Eqs.~22! and ~32! into Eq. ~12!, Dn(j) can be
expressed by

Dn~j!5$~j2jn!~j1j̄n!@~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!#3/2%21

3S ~ j̄nudnu21jnugnu2!~ j̄nugnu21jnudnu2! 0

0 ~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!
D

3F j2S j̄nudnu21jnugnu2 0

0 j̄nugnu21jnudnu2
D 1j~jn

22 j̄n
2!S 0 ḡndn

d̄ngn 0 D
2ujnu2S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D G . ~34!

In order to determinegn anddn , substituting Eq.~14! into Eq.~11!, then taking the limitj→jn , Eq.~11! can be written as
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]x„CnFnCn21~jn!…5Ln~jn!@CnFnCn21~jn!#,
~35!

] t„CnFnCn21~jn!…5An~jn!@CnFnCn21~jn!#,

where the factor is independent ofx and t. BecauseFn is the degeneracy, the second factor of the right-hand side, i.e.,
(gndn)Cn21(jn), should appear in the left-hand side with its original form; therefore, we can simply obtain

~gndn!5~bn1!Cn21
21 ~jn!. ~36!

Whenbn is a constant, it will be determined by the boundary condition and the initial condition.
Whenj→1, according to Eq.~11! and Appendix A, we can obtain

~Mn•s!5Dn~1!~Mn21•s!Dn
†~1!, ~37!

whereDn(1) can be written as

Dn~1!5@~12jn!~11 j̄n!~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!#21

3S ~ j̄nudnu21jnugnu2!~ j̄nugnu21jnudnu2! 0

0 ~ j̄nugnu21jnudnu2!~ j̄nudnu21jnugnu2!
D

3S ~12jn
2!j̄nudnu21~12 j̄n

2!jnugnu2 ~jn
22 j̄n

2!ḡndn

~jn
22 j̄n

2!d̄ngn ~12jn
2!j̄nugnu21~12 j̄n

2!jnudnu2
D . ~38!

Similarly, whenj→21, in terms of Eq.~11! and Appendix A, we can also obtain

sz~Mn•s!sz5Dn~21!sz~Mn21•s!szDn
†~21!. ~39!

Using Appendix A andCnCn
15I in Eq. ~25!, Eq.~39! can be transformed into

sz~Mn•s!sz52sx~Mn•s!sx . ~40!

Whenn51, according to Eqs.~37! and ~40!, we can obtain

~M1!x2 i ~M1!y5„D1~1!…12„D1~1!…211„D1~1!…11„D1~1!…22, ~41!

~M1!z5„D1~1!…12„D1~1!…111„D1~1!…11„D1~1!…12, ~42!

whereD1(1) can be written as

D1~1!5@~12j1!~11 j̄1!~ j̄1ug1u21j1ud1u2!~ j̄1ud1u21j1ug1u2!#21

3S ~ j̄1ud1u21j1ug1u2!~ j̄1ug1u21j1ud1u2! 0

0 ~ j̄1ug1u21j1ud1u2!~ j̄1ud1u21j1ug1u2!
D

3S ~12j1
2!j̄1ud1u21~12 j̄1

2!j1ug1u2 ~j1
22 j̄1

2!ḡ1d1

~j1
22 j̄1

2!d̄1g1 ~12j1
2!j̄1ug1u21~12 j̄1

2!j1ud1u2
D . ~43!

In terms of Eq.~36!, since only relative values of (bn1)
have meaning, one can find

~g1 d1!;~ f 1 f 1
21!S 1 1

i 2 i D , ~44!

where

f 15b1
1/2expH i ~j12h2j1

21!Fx22
~j1

21h2!2

j1~j1
22h2!

tG J ; ~45!

therefore

g15 f 11 i f 1
21 , d15 f 12 i f 1

21 , ~46!

while

f 15exp~2f11 if2!, ~47!

f15
j19~ uj1u21h2!

uj1u2
~x2V1t2x10!, ~48!

and
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f25
j18~ uj1u22h2!

uj1u2
~x2V2t2x20!, ~49!

where

V15
4j18~ uj1u22h2!

uj1u2
~50!

and

V25
2~j18

22j19
2!~ uj1u41h4!14h2uj1u4

j18uj1u
2~ uj1u22h2!

. ~51!

By means of Eqs.~41!–~51!, the single soliton solutions
can be written as

~M1!x5
2j19

2~ uj1u42h4!sinhf1sinf212j18j19~ uj1u22h2!2coshf1cosf2

uj1u2~ uj1u22h2!2cosh2f114h2j19
2uj1u2sin2f2

, ~52!

~M1!y5
2j19

2~ uj1u22h2!2sinhf1cosf222j18j19~ uj1u42h4!coshf1sinf2

uj1u2~ uj1u22h2!2cosh2f114h2j19
2uj1u2sin2f2

, ~53!

~M1!z5M02
2j19

2~ uj1u22h2!218h2j19
2uj1u2sin2f2

uj1u2~ uj1u22h2!2cosh2f114h2j19
2uj1u2sin2f2

. ~54!

Similarly, we can also obtain the two-soliton, three-soliton, and multisoliton solutions.
It is concluded that the solitary waves~52!–~54! depend essentially on two velocitiesV1 in Eq. ~50! andV2 in Eq. ~51!,

which describe a spin configuration deviating from a homogeneous magnetization. The center of an inhomogeneity moves with
a constant velocityV1, while the shape of solitary waves~the direction of magnetization in its center! also changes with
another velocityV2.

In the polar coordinates, taking thez axis as the polar axis,

cosu512
2j19

2~ uj1u22h2!218h2j19
2uj1u2sin2f2

uj1u2~ uj1u22h2!2cosh2f114h2j19
2uj1u2sin2f2

, ~55!

w5w01f21tan21F j19~ uj1u22h2!

j18~ uj1u21h2!
tanhf1G12tan21F 2uj1u2h2

uj1u42h4tanhf1G , ~56!

we can find the following property:

cosu~2x,2t !5cosu~x,t !. ~57!

In order to analyze the features of the previous soliton solutions, setting the preliminary values as zero in the moving
coordinates of the soliton,

cosu512

2j19
2~ uj1u22h2!218h2j19

2uj1u2sin2Fj18~ uj1u22h2!

uj1u2
~x2V2t !G

uj1u2~ uj1u22h2!2cosh2Fj19~ uj1u21h2!

uj1u2
xG14h2j19

2uj1u2sin2Fj18~ uj1u22h2!

uj1u2
~x2V2t !G , ~58!

w5w01
j18~ uj1u22h2!

uj1u2
~x2V2t !1tan21H j19~ uj1u22h2!

j18~ uj1u21h2!
tanhF j19~ uj1u21h2!

uj1u2
xG J

12tan21H 2uj1u2h2

uj1u42h4tanhF j19~ uj1u21h2!

uj1u2
xG J . ~59!

Therefore, the depths and widths of the surface of solitary
waves are not constants, but vary periodically with time. The
shape of the solitary waves also changes with velocityV2,
and it is not symmetrical with respect to the center. This
feature did not appear in the soliton solution for all othernon-

linear equations solved.
Obviously, whenh→0, m 5 l, and these soliton solu-

tions in an anisotropic ferromagnet reduce to those in an
isotropic ferromagnet; for example, the single soliton solu-
tions ~52!–~54! are transformed to
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~M1!x5
2j19

uj1u2
sech2@j19~x24j18t2x10!#S j19sinh@j19~x24j18t

2x10!#sinH j18Fx22S j182
j19

2

j18
D t2x20G J

1j18cosh@j19~x24j18t2x10!#cosH j18Fx22S j18

2
j19

2

j18
D t2x20G J D , ~60!

~M1!y5
2j19

uj1u2
sech2@j19~x24j18t2x10!#H j19sinh@j19~x24j18t

2x10!#cosF j18S x22S j182
j19

2

j18
D t2x20D G

2j18cosh@j19~x24j18t2x10!#sinF j18S x22S j18

2
j19

2

j18
D t2x20D G J , ~61!

~M1!z5M02
2j19

2

uj1u2
sech2@j19~x24j18t2x10!#. ~62!

These results are equal to Eq.~27a! obtained by the method
of an inverse scattering transformation in Ref.@25#. While
taking thez axis as the polar axis in the polar coordinates,

cosu512
2j19

2

uj1u2
sech2@j19~x24j18t2x10!#, ~63!

w5w01j18Fx22S j182
j19

2

j18
D t2x20G

1tan21H j19

j18
tanh@j19~x24j18t2x10!#J . ~64!

Whent→0, these results are equivalent to Eq.~22! obtained
by means of the method of the separating variables in the
moving coordinates in Ref.@21#.

Figures 1–3 give some graphical illustrations of a previ-
ous soliton solution (M1)z expressed by Eq.~54! in an an-
isotropic ferromagnet, and that by Eq.~62! in an isotropic
ferromagnet. In these figures, we took the parameters
j1850.1, j1950.2, x1050, x2050, andp/(4V1) as a unit of
time in three figures, then seth50.10 in Fig. 1,h50.33 in
Fig. 2, andh50 in Fig. 3. If thex2(M1)z plane is taken as
a reference plane whent50, we can directly find the follow-
ing feature of solitary wave (M1)z .

~1! Since the lowest point of the surface is located in the
plane of the center of surface, we can observe the motion of
center by looking at the motion of the lowest point. The
lowest point of the surface in the previous figures moves
with three constant velocitiesV1 corresponding to three an-
isotropic parametersh, respectively.

~2! The shape of the surface of (M1)z changes with an-
other constant velocityV2; the surface is not symmetrical
with respect to the center. Whenh→0, the soliton solution
(M1)z , expressed by Eq.~54! in an anisotropic ferromagnet,
reduces to that in Eq.~62! in an isotropic ferromagnet; the
shape of surface of (M1)z does not change with velocity
V2, and the surface is symmetrical with respect to the center,
as illustrated by Fig. 3.

~3! The depth and width of the surface of (M1)z are not
constants but vary periodically with time. Whenh→0, the
depth and width of the surface of (M1)z , expressed by Eq.
~62! in an isotropic ferromagnet, does not change periodi-
cally with time; the surface is also symmetrical with respect
to the center, as illustrated by Fig. 3.

In terms of soliton solutions~55! and ~56! in an aniso-
tropic ferromagnet, we can find that thez component of the
total magnetic moment

FIG. 1. Some graphical illustrations of a soliton solution
(M1)z expressed by Eq.~54! in an anisotropic ferromagnet, where
h50.10,j1850.1,j1950.2,x1050, x2050, andp/(4V1) as units of
time.

FIG. 2. Some graphical illustrations of a soliton solution
(M1)z expressed by Eq.~54! in an anisotropic ferromagnet, where
h50.33,j1850.1,j1950.2,x1050, x2050, andp/(4V1) as units of
time.
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Pz5M0E dx~12cosu! ~65!

is not a constant, and it is dependent periodically on time,
wherePz has the sense of the mean number of spin deviated
from the ground state in a localized magnetic excitation. The
total momentum of the magnetization field,

P52M0E dx~12cosu!¹w, ~66!

is also not constant. Only in the case of an isotropic ferro-
magneth50 are the operatorsPz andP constants of motion.
Tjio and Wright @21# took advantage of this in solving the
equation of motion. These properties are important for mag-
netization in an anisotropic ferromagnet with an external
field, but they have never been obtained by other methods.

IV. ASYMPTOTIC BEHAVIOR OF MULTISOLITON
SOLUTIONS

In this section we will construct a direct procedure for
studying the asymptotic behavior of multisoliton solutions in
an anisotropic ferromagnet with a magnetic field. According
to Eq. ~10!, we can define

CN~j!5JN~j!C0~j!, ~67!

where

JN~j!5DN~j!DN21~j! . . .D1~j!, ~68!

where JN(j) has N pairs of poles jn and 2 j̄n ,
n51,2, . . . ,N. Similar to Eq.~11!, we can obtain the Lax
equations forCN(j),

]xCN~j!5LN~j!CN~j!,
~69!

] tCN~j!5AN~j!CN~j!.

On the basis of Eq.~12!, JN(j) can be written as

JN~j!5KNPN~j!, ~70!

where

KN~j!5CN~j!CN21~j! . . .C1~j! ~71!

and

PN~j!5I2 (
n51

N
1

jn2j
Gn1 (

n51

N
1

j̄n1j
G̃n , ~72!

whereKN is a 232 matrix independent ofj, i.e.,

KN~j!5expF i2QN~j!szG , ~73!

where

QN~j!5 (
n51

N

un . ~74!

By means of Appendix A, we can obtain the relations

JN~j!5sxJ~2 j̄ !sx , ~75!

JN
† ~ j̄ !5JN

21j, ~76!

JN~j!JN
21~j!5JN

21~j!JN~j!5I , ~77!

PN
† ~ j̄ !5I2 (

n51

N
1

j̄n2j
Gn
†2 (

n51

N
1

jn1j
sxGn

Tsx , ~78!

PN
21~j!5PN

† ~ j̄ !, ~79!

and

G̃n52sxḠnsx . ~80!

BecauseJN(j)JN
21(j)5JN

21(j)JN(j)5I in Eq. ~77!, its
residue atj5jn should vanish, i.e.,GmPN

† ( j̄m)50, i.e.,

GmS I2 (
n51

N
1

j̄n2jm
Gn
†2 (

n51

N
1

jn1jm
sxGn

TsxD 50.

~81!

This result shows thatGm is degenerated; thereforeGn can
be defined

Gn5~an8 bn8!T~gn8 dn8!. ~82!

In order to solve Eqs.~81! and ~82!, we will introduce a
transformation

JN8 ~j!5U21JN~j!U ~83!

and

Gn85U21GnU, G̃n85U21G̃nU52G8n , ~84!

whereU21sxŪ5 i .

FIG. 3. Some graphical illustrations of a soliton solution
(M1)z expressed by Eq.~62! in an isotropic ferromagnet, where
s50, j1850.1, j1950.2, x1050, x2050, andp/(4V1) as units of
time.
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Corresponding to Eq.~81!, one can write

Gm8 S I2 (
n51

N
1

j̄n2jm
Gn8

†2 (
n51

N
1

jn1jm
Gn8

TD 50. ~85!

Taking the limitj→jn in Eq. ~69!, we can obtain

]x„KNGnC0~jn!…5LN~jn!„KNGnC0~jn!…,
~86!

] t„KNGnC0~jn!…5AN~jn!„KNGnC0~jn!….

SinceGn is degenerate, the factor

~g8n d8n!C0~jn! ~87!

must be independent ofx and t. Therefore, we can simply
obtain

~g8n d8n!5~bn 1!C0
21~jn!, ~88!

wherebn is a constant which has been shown in Eq.~36!,
while a8n , b8n , g8n , andd8n are different froman , bn ,
gn , anddn except forg815g1 andd81 5 d1.

Similar to Eq.~82!, Gn8 can be written as

Gn85~rn nn!
T~ f n f n

21!. ~89!

where

f n5b1
1/2expH 2 i ~j2h2j21!Fx22

~j21h2!2

j~j22h2!
t GszJ .

~90!

Substituting Eq.~89! into Eq. ~85!, we can obtain

f m5 (
n51

N
1

j̄n2jm
~ f mf n1 f m

21f n
21!r n̄1 (

n51

N
1

jn1jm
~ f mf n

1 f m
21f n

21!rn ~91!

and

f m
215 (

n51

N 1

jn2jm
~ f mf n1 f m

21f n
21!n n̄1 (

n51

N 1

jn1jm
~ f mf n

1 f m
21f n

21!nn . ~92!

By means of Eqs.~91! and~92!, one can findrn ,nn, and
PN8 (j), e.g.,

PN8 ~1!11512 (
n51

N
1

j̄n11
r̄nf̄ n2 (

n51

N
1

jn21
rnf n . ~93!

According to Eqs.~91! and ~92!, we can also obtain

15 (
n51

N
1

j̄n2jm
~11 f m

22f n
22!rnf n1 (

n51

N
1

jn1jm
~1

1 f m
22f n

22!rnf n ~94!

and

15 (
n51

N
1

jn1jm
~11 f m

22f n
22!rnf n1 (

n51

N
1

jn2jm
~1

1 f m
22f n

22!rnf n . ~95!

By means of Eqs.~94! and ~95!, rn , r n̄, PN8 (j)11, and

PN8 (j)12 can be easily determined. However,rn andr n̄ will
appear in every equation of Eqs.~94! and ~95!, and it is
difficult to obtain explicit expressions of them by the well-
known Binet-Cauchy formula. The asymptotic behaviors of
the multisoliton solutions can be derived from them.

Introducing

D l5H rnf n if n5 l , lP1,2, . . . ,N

r̄nf̄ n if n5 l2N, lPN11,N12, . . . ,2N
~96!

and

En51, lP1,2, . . . ,2N, ~97!

whereE is a row matrix, Eqs.~94! and~95! can be expressed
by

E5DQ, ~98!

whereQ is a 2N32N matrix,

Qn,m5
1

jn1jm
~11 f n

22f m
22!, ~99!

Qn,N1m5
1

jn2 j̄m
~11 f n

22f m
22!, ~100!

QN1n,m5
1

jn2jm
~11 f n

22f m
22!, ~101!

QN1n,N1m5
1

jn1jm
~11 f n

22f m
22!. ~102!

By means of Eq.~97!, one can find

D5EQ21. ~103!

PN8 (1)11 in Eq. ~93! can be written as

PN8 ~1!11511(
l51

2N

D lRl511DRT, ~104!

where

Rl55
21

jn21
if n5 l , lP1,2, . . . ,N

21

j̄n11
if n5 l2N, lPN11,N12, . . . ,2N.

~105!

According to Eq.~97!, PN8 (1)11 in Eq. ~104! can be ex-
pressed as

4620 54LIU, WANG, PU, AND HUANG



PN8 ~1!11511EQ21RT5
det~Q1RTE!

detQ
. ~106!

WhenN51,j5j j , detQ is written as

detQ5detS 1

2j j
~11 f j

24!
1

j j2 j̄ j
~11u f j u24!

1

j̄ j2j j
~11u f j u24!

1

2j̄ j
~11 f̄ j

24!
D .
~107!

By means of Eq.~90!, f n can be written as

f n5exp~2f1n1 if2n!, ~108!

where

f1n5
jn9~ ujnu21h2!

ujnu2
~x2V1nt2x1n0! ~109!

and

f2n5
jn8~ ujnu22h2!

ujnu2
~x2V2nt2x2n0!, ~110!

while

V1n5
4jn8~ ujnu22h2!2

ujnu2
, ~111!

V2n5
2~jn8

22jn9
2!~ ujnu41h2!414h4ujnu4

jn8ujnu
2~ ujnu22h2!

. ~112!

Supposing alljn9.0 andV1N.V1(N21). . . ..V11, the
vicinity of (Vint2x1n0) ( i51 and 2! is denoted byQn . In
the extreme larget, these vicinities are separated from left to
right asQN ,QN21 , . . . ,Q1. In the vicinity Q j , there are
limits,

~x2V1nt2x1n0!→2`, u f nu21→0 if n, j ~113!

and

~x2V1mt2x1n0!→`, u f mu21→` if m. j ,
~114!

while detQ tends to

*
1

jn1jn8

1

jn1j j
0

1

jn2 j̄n8

1

jn2 j̄ j
0

1

j j1jn8

11 f j
24

2j j

f j
22f m8

22

j j1jm8

1

j j2 j̄n8

11u f j u24

j j2 j̄ j

f j
22 f̄ m8

22

j j2 j̄m8

0
f m

22f j
22

jm1j j

f m
22f m8

22

jm1jm8

0
f m

22 f̄ j
22

jm2 j̄ j

f m
22 f̄ m8

22

jm2 j̄m8

1

j̄n2jn8

1

j̄n2j j
0

1

j̄n1 j̄n8

1

j̄n1 j̄ j
0

1

j̄ j2jn8

11u f j u24

j̄ j2j j

f̄ j
22f m8

22

j̄ j2jm8

1

j̄ j1 j̄n8

11 f̄ j
24

2j̄ j

f̄ j
22 f̄ m8

22

j̄ j1 j̄m8

0
f̄ m

22f j
22

j̄m2j j

f̄ m
22f m8

22

j̄m2jm8

0
f̄ m

22 f̄ j
22

j̄m1 j̄ j

f̄ m
22 f̄ m8

22

j̄m1 j̄m8

* , ~115!

wheren,n8, j,m,m8.
In Appendix C, we find that the asymptotic behavior of

the multisoliton solutions in limits~113! is similar to the
single soliton solution, butf j is replaced byf j

(1)

f j
~1 !5S t j

x j
D 1/2f j , ~116!

t j5 )
n51

j21
~j j2jn!~j j1 j̄n!

~j j1jn!~j j2 j̄n!
, ~117!

x j5 )
m5 j11

N
~j j2jm!~j j1 j̄m!

~j j1jm!~j j2 j̄m!
, ~118!

while detQ→detQj
(1)

detQj
~1 !52

~j j2 j̄ j !
2

4uj j u2uj j2 j̄ j u2
~11u f j

~1 !u28!

1
1

4uj j u2
@~ f j

~1 !!241~ f j
~1 !!24#, ~119!
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the asymptotic expression of detQ8 should be obtained.
Meanwhile,F1 j

(1) andF2 j
(1) , corresponding to those in Eqs.

~109! and ~110!, can be written as

F1 j
~1 !5

j j8~ uj j u22h2!

uj j u2
~x2V1 j t2x1 j02G1 j

~1 !!, ~120!

F2 j
~1 !5

j j8~ uj j u22h2!

uj j u2
~x2V2 j t2x2 j02G2 j

~1 !!, ~121!

where

G1 j
~1 !5

1

2l j8
~ lnut j u2 lnux j u!, ~122!

G2 j
~1 !5argt j2argx j . ~123!

Similarly, whent→2`, the asymptotic behavior of mul-
tisoliton solutions in the vicinity ofQ j can be written, e.g.,
analogous to Eqs.~120! and ~121!,

G1 j
~2 !52G1 j

~1 ! , ~124!

G2 j
~2 !52G2 j

~1 ! ; ~125!

therefore, the total additional displacement ofG1 j and the
total phase shiftG2 j are

G1 j52G1 j
~1 ! , ~126!

G2 j52G2 j
~1 ! . ~127!

V. CONCLUSION

In the present paper we introduced a particular parameter
j for equations of motion of the magnetization in an aniso-
tropic ferromagnet with a magnetic field; the Lax equations
for the Darboux matrices are generated recursively. By
choosing the constants involved in the Darboux matrices, the
Jost solutions satisfy the corresponding Lax equations, the
exact soliton solutions describing nonlinear dynamics of the
magnetization are investigated, and the asymptotic behavior
of multisoliton solutions are also analyzed. These results
have never been found by any other methods. They may be
useful for further theoretical research and practical applica-
tion.

Equations~52!–~54! show that the soliton solutions in an
anisotropic ferromagnet depend essentially on two velocities,

V1 in Eq. ~50! andV2 in Eq. ~51!. The center of an inhomo-
geneity moves with a constant velocityV1, while the shape
of the solitary waves also changes with another velocity
V2. Therefore, the depths and widths of the surface of the
solitary waves are not constants but vary periodically with
time, and the shape of the solitary waves is not symmetrical
with respect to the center. By means of these features, we
find that soliton solutions in an anisotropic ferromagnet can-
not be expressed in the form of product of separated vari-
ables in the moving coordinates@21,22#. Only whenh→0
can these soliton solutions in an anisotropic ferromagnet re-
duce to those in an isotropic ferromagnet; for example, the
single soliton solutions~63! and~64! in the polar coordinates
are equivalent to Eq.~22! obtained by means of the method
of separating variables in the moving coordinates in Ref.
@21#. Therefore, it is impossible to investigate the exact soli-
ton solutions in an anisotropic ferromagnet by means of the
method of separating variables.

Reducing the equations of motion to an appropriate form,
Kosevich, Ivanov, and Kovalev@29# found a solution. In
terms of Eq.~55! in the polar coordinates, there exists

tan2S u

2D5
j19

2~ uj1u22h2!214h2j19
2uj1u2sin2f2

uj1u2~ uj1u22h2!2cosh2f12j19
2~ uj1u22h2!2

.

~128!

If we compared Eq.~128! with an approximate solution
given in Ref.@29#, we can find that previous properties of the
soliton solutions remain even in an approximation on the
order of h2. The solutions of Ref.@29# do not satisfy the
Landau-Lifschitz equation for an anisotropic ferromagnet
even in the first order of anisotropy, and there is no reason to
consider it as an approximate solution; all attempts tried in
this approximation were not successful.

Introducing a particular parameterj in Eq. ~6!, while
j56h corresponds to zerol and tom562h. In the com-
plex m plane, these two points are the edges of cuts.j con-
tributes to the determination factorCn in Eq. ~12!. Cn is
important to ensure that the Jost solution generated satisfies
the corresponding Lax equations. This indicates that in the
inverse scattering transformation the edges of cuts in the
complex plane must make a contribution even in the case of
nonreflection. Unfortunately, Borovik and Kulinich@33,34#
apparently did not consider these effects. Evidently, they did
not obtain any expression of the solution.

Using the Hirota method, Bogdan and Kovalev@35#
sought soliton solutions of the Landau-Lifshitz equation in
an anisotropic ferromagnet in the form

M x1 iM y5
2 f ig

u f u21ugu2
, M z5

u f u22ugu2

u f u21ugu2
, ~129!

while
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f5 (
n50

[N/2]

(
C2n

a~ i 1 , . . . ,i 2n!exp~r i11•••1r i2n!,

~130!

g*5 (
m50

[ ~N21!/2]

(
C2m11

a~ j 1 , . . . ,j 2m11!

3exp~r j 1
1•••1r j 2m11

!, ~131!

where @N/2# is the maximum integer in addition toN/2,
Cn represents a summation over all combinations ofN ele-
ments inn, andr i5(ki1v i t1r i

0), while

a~ i 1 , . . . ,i n!5H (
k, l

~n!

a~ i k ,i l !

1

for n>2

for n50,1. ~132!

According to the expression of the single soliton solutions
~52!–~54! in this paper, one can see that they are difficult to
be expressed in the form of Hirota factorization. Obviously,
Bogdan and Kovalev@35# did not obtain the desired results.
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APPENDIX A: SOME RELATIONS

According to Eqs.~4!, ~5!, and ~6!, we can obtain the
relations

l~2 j̄ !52l~j!,

~A1!

m~2 j̄ !52m~j!

and

L~2 j̄ !5sxL~j!sx ,

~A2!

L†~ j̄ !52L~j!

and

A~2 j̄ !5sxA~j!sx ,

~A3!

A†~ j̄ !52A~j!.

In terms of Eq.~9!, there exist

C0~2 j̄ !52 isxC0~j!,
~A4!

C0
†~ j̄ !5C0

21~j!;

then, using these relations, one can find

Cn~2 j̄ !52 isxCn~j!,
~A5!

Cn
†~ j̄ !5Cn

21~j!

and

Dn~2 j̄ !5sxDn~j!sx ,
~A6!

Dn
†~ j̄ !5Dn

21~j!.

APPENDIX B: DETERMINATION OF Fn AND F̃ N

Putting

Fn5~anbn!
T~gndn!, ~B1!

then substituting it into Eq.~21!, we can obtain the following
linear equations:

gn2~ ugnu21udnu2!ān2
jn2 j̄n

jn
gndnbn50,

~B2!

dn2~ ugnu21udnu2!b̄n2
jn2 j̄n

jn
gndnan50.

Using gn anddn to expressan , bn , Fn , and F̃n can be
written as

Fn5j@~ j̄nugnu21jnudnu2!~ j̄nudnu2

1jnugnu2!#21S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D

3S ḡn

d̄n
D ~gn dn! ~B3!

and

F̃n5 j̄@~ j̄nugnu21jnudnu2!~ j̄nudnu2

1jnugnu2!#21S j̄nugnu21jnudnu2 0

0 j̄nudnu21jnugnu2
D

3S gn

dn
D ~ ḡn d̄n!. ~B4!

APPENDIX C: ANALYSIS OF ASYMPTOTIC BEHAVIOR
OF THE MULTISOLITON SOLUTIONS

In Eq. ~115!, only those terms leading to
u f j11u28

•••u f Nu28 remain, and it is difficult to calculate this
determinant. Similar to the procedure in Ref.@34#, we will
only consider the term withoutf j ,
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*
1

jn1jn8

1

jn1j j
0

1

jn2 j̄n8

1

jn2 j̄ j
0

1

j j1jn8

1

2j j
0

1

j j2 j̄n8

1

j j2 j̄ j
0

0 0
f m

22f m8
22

jm1jm8

0 0
f m

22 f̄ m8
22

jm2 j̄m8

1

j̄n2jn8

1

j̄n2j j
0

1

j̄n1 j̄n8

1

j̄n1 j̄ j
0

1

j̄ j2jn8

1

j̄ j2j j
0

1

j̄ j1 j̄n8

1

2j̄ j
0

0 0
f̄ m

22f m8
22

j̄m2jm8

0 0
f̄ m

22 f̄ m8
22

j̄m1 j̄m8

* . ~C1!

The term involvingf j
24 is the following determinant:

*
1

jn1jn8
0 0

1

jn2jn8

1

jn2 j̄ j
0

0
f j

24

2j j

f j
22f m8

22

j j1jm8

0 0
f j

22 f̄ m8
22

j j2 j̄m8

0
f m

22f j
22

jm1j j

f m
22f m8

22

jm1jm8

0 0
f m

22 f̄ m8
22

jm2 j̄m8

1

j̄n2jn8
0 0

1

j̄n1 j̄n8

1

j̄n1 j̄ j
0

1

j̄ j2jn8
0 0

1

j̄ j1 j̄n8

1

2j̄ j
0

0
f̄ m

22f j
22

j̄m2j j

f̄ m
22f m8

22

j̄m2jm8

0 0
f̄ m

22 f̄ m8
22

j̄m1 j̄m8

* . ~C2!

In addition to the common factoru f j11u28 . . . u f Nu28, these two determinants are clearly proportional to

U 1

jn1jn8

1

jn2 j̄n8

1

jn2 j̄ j

1

j̄n2jn8

1

j̄n1 j̄n8

1

j̄n1 j̄ j

1

j̄n2jn8

1

jn1 j̄n8

1

2j̄ j

UU 1

jm1jm8

1

jm2 j̄m8

1

j̄m2jm8

1

j̄m1 j̄m8

U ; ~C3!

the proportional coefficients are

~j j1 j̄ j !
2

2j j uj j2 j̄ j u2
)
n51

j21
~j j2jn!

2~j j1 j̄n!
2

~j j1jn!
2~j j2 j̄n!

2
~C4!

and
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2
1

2j j
)

m5 j11

N
~j j2jm!2~j j1 j̄m!2

~j j1jm!2~j j2 j̄m!2
. ~C5!

Therefore, the asymptotic behavior of the multisoliton solutions in the limits~113! and ~114! is similar to the single soliton
solution.
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